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Abstract

A stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback control is

proposed. First, a quasi-integrable Hamiltonian system with delayed feedback control subjected to Gaussian white noise

excitations is formulated and then transformed into Itô stochastic differential equations without time delay. Then, the

averaged Itô stochastic differential equations for the system are derived and the stationary solution of the averaged

Fokker–Planck–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both non-

resonant and resonant cases. Finally, three examples are worked out in detail to illustrate the application and effectiveness

of the proposed method and the effect of time delayed feedback control on the response of the systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the implementation of feedback control of a dynamical system, time delay is usually unavoidable due to
the time spent in measuring and estimating the system state, calculating and executing the control forces, etc.
This time delay causes unsynchronized application of the control forces and this unsynchronization can not
only deteriorate the control performance but also cause instability of the system. Thus, the time delay problem
has drawn much attention of the control community.

Systems with time delay under deterministic excitation have been studied extensively [1–6]. The time-delayed
systems under stochastic excitation have attracted many researches recently. The multiscale analysis has been
adopted to study the effect of noise near critical delay in stochastic delay differential equations by Klosek and
Kuske [7]. The center manifold reduction of delay differential equations was used by Fofana [8] to deal with
machine-tool chatter problem. The linearly controlled system with deterministic and random time delays
excited by Gaussian white noise has been treated by Grigoriu [9] and the stability of such a system has been
investigated by means of Lyapunov exponent. The effects of time delay on the controlled linear systems under
Gaussian random excitation has been studied by Di Paola and Pirrotta [10] using Taylor expansion of the
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.07.007

ing author. Tel.: +86 571 87953102; fax: +86 571 87952651.

ess: wqzhu@yahoo.com (W.Q. Zhu).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.07.007
mailto:wqzhu@yahoo.com


ARTICLE IN PRESS
Z.H. Liu, W.Q. Zhu / Journal of Sound and Vibration 299 (2007) 178–195 179
control force. The effect of time delay on nonlinear systems under Gaussian white noise also has been studied
by Bilello et al. [11] using the Taylor expansion.

In the present paper, a stochastic averaging method for quasi-integrable Hamiltonian systems with time-
delayed feedback control under Gaussian white noise excitation is proposed. The delayed feedback control
forces are approximated by control forces without time delay and the system is transformed into Itô stochastic
differential equations without time delay, from which the averaged Itô equations are derived. The stationary
solution of the averaged FPK equation associated with averaged Itô equations is obtained by using the
technique proposed by the second present author and his co-worker [12]. Three examples are worked out in
detail to illustrate the application and effectiveness of the proposed procedure and the effect of delayed
feedback control on the response of the systems.

2. Quasi-integrable Hamiltonian systems with delayed feedback control

Consider an n-degree-of-freedom (ndof) quasi-Hamiltonian system with delayed feedback control forces
governed by the following equations:

_Qi ¼
qH 0

qPi

,

_Pi ¼ �
qH 0

qQi

� �cij

qH 0

qPj

� �FiðQt;PtÞ þ �
1=2f ikW kðtÞ; i; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m, ð1Þ

where Qi and Pi are generalized displacements and momenta, respectively; H 0 ¼ H 0ðQ;PÞ is twice
differentiable Hamiltonian; e is a small positive parameter; �cij ¼ �cijðQ;PÞ represent the coefficients of
quasi-linear dampings; �1=2f ik ¼ �

1=2f ikðQ;PÞ represent the amplitudes of stochastic excitations; �FiðQt;PtÞ

with Qt ¼ Qðt� tÞ and Pt ¼ Pðt� tÞ denote delayed feedback control forces, t is the time delay; Wk(t) are
Gaussian white noises in the sense of Stratonovich with correlation functions

E½W kðtÞW lðtþ TÞ� ¼ 2DkldðTÞ; k; l ¼ 1; 2; . . . ;m. (2)

When � ¼ 0, system (1) is reduced to ndof Hamiltonian system. It is called integrable or completely
integrable if there exist n independent integrals of motion, H1 ¼ H;H2; . . . ;Hn, which are in involution. The
term ‘‘in involution’’ means that all Hi are commute with each other, i.e.,

½Hi;Hj� ¼ 0; i; j ¼ 1; 2; . . . ; n, (3)

where

½Hi;Hj� ¼
qHi

qpk

qHj

qqk

�
qHi

qqk

qHj

qpk

; k ¼ 1; 2; . . . ; n (4)

is the Poisson bracket of Hi and Hj.
In principle, a canonical transformation

I i ¼ I iðq; pÞ; yi ¼ yiðq; pÞ; i ¼ 1; 2; . . . ; n (5)

can be introduced so that the Hamiltonian equations of an integrable Hamiltonian system are of the form

_I i ¼ �
q
qyi

HðIÞ ¼ 0,

_yi ¼
q
qI i

HðIÞ ¼ oiðIÞ, ð6Þ

where Ii and yi are action-angle variables and oi(I) are the frequencies of the system. Eq. (6) can be easily
solved to yield

I i ¼ const:,

yi ¼ oiðIÞtþ di; i ¼ 1; 2; . . . ; n, ð7Þ
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where di are constants. It is seen from Eq. (7) that the motion of an integrable Hamiltonian system is almost
periodic or periodic depending upon the number of the strong resonant relations of the form

ku
i oi ¼ 0; u ¼ 1; 2; . . . ; a; i ¼ 1; 2; . . . ; n (8)

among oi(I), where ki
u are integers and a is the number of resonant relationships. If there is no resonant

relation, then the Hamiltonian system is called non-resonant. The motion of non-resonant integrable
Hamiltonian system is almost periodic and a single orbit covers n-dimensional tore uniformly. If there are n�1
resonant relations, then the system is called completely resonant and the motion of the system is periodic.
If the number of resonant relations is between 1 and n�1, then the system is called partially resonant and the
motion of the system is almost periodic.

It is noted that n action variable Ii can be regarded as n independent integrals of motion in involution,
satisfying Eq. (3), and the frequencies of truly nonlinear Hamiltonian systems are functions of integrals of
motion or action variables.

If the Hamiltonian system associated with Eq. (1) is integrable, then system (1) is called quasi-integrable
Hamiltonian system. This system can be modeled as Stratonovich stochastic differential equations and then
converted into Itô stochastic differential equation by adding Wong–Zakai correction terms [13], i.e.,

dQi ¼
qH 0

qPi

,

dPi ¼ �
qH 0

qQi

þ �cij
qH 0

qPi

þ �FiðQt;PtÞ � �Dklf jl

qf ik

qPj

� �
dtþ �1=2sik dBkðtÞ; i; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m, ð9Þ

where Bt(t) are standard Wiener processes and rrT ¼ 2fDfT. The double summation terms �Dklf jlqf ik=qPj in
Eq. (9) are the Wong–Zakai correction terms.

Assume that the Hamiltonian H0 associated with system (1) is of the form

H 0 ¼
Xn

i¼1

H 0iðqi; piÞ; H 0i ¼
1

2
p2

i þ GðqiÞ, (10)

where GðqiÞX0 is symmetric with respect to the qi ¼ 0, and with minimum at qi ¼ 0. Then the associated
Hamiltonian system has a family of periodic solutions around the origin and the solution to Eq. (9) is of the
form [14,15]

QiðtÞ ¼ Ai cos FiðtÞ; PiðtÞ ¼ �Ai

dYi

dt
sin FiðtÞ; FiðtÞ ¼ YiðtÞ þ GiðtÞ, (11)

where cosF(t) and sinF(t) are called generalized harmonic functions. For quasi-integrable Hamiltonian
systems, Ai(t) and Gi(t) are slowly varying processes and the average value of the instantaneous frequency dYi/
dt is equal to oiðAiÞ [14,15]. If Aiðt� tÞ and Giðt� tÞ are approximated by AiðtÞ and GiðtÞ, respectively, and
Yiðt� tÞ is approximated by YiðtÞ � oit, then we have the following approximate expressions:

Qiðt� tÞ ¼ Aiðt� tÞ cos Fiðt� tÞ¼: AiðtÞ cos½oiðt� tÞ þ GiðtÞ�

¼ AiðtÞfcos½oitþ GiðtÞ� cos oitþ sin½oitþ GiðtÞ� sin oitg ¼ QiðtÞ cos oit�
Pi

oi

sin oit,

Piðt� tÞ ¼ � Aiðt� tÞ
dYiðt� tÞ

dt
sin Fiðt� tÞ¼: � AiðtÞoi sin½oiðt� tÞ þ GiðtÞ�

¼ � AiðtÞoifsin½oitþ GiðtÞ� cos oitþ cos½oitþ GiðtÞ� sin oitg ¼ Pi cos oitþQiðtÞoi sin oit. ð12Þ

The numerical results for three example described in Section 4 will show that Eq. (12) is acceptable even for
some large time delay t:
�F ðQt;PtÞ � �Dklf jl qf ik=qPj in Eq. (9) can be split into two parts: one has the effect of modifying the

conservative forces and the other modifying the damping forces. The first part can be combined with
�qH=qQi to form an overall effective conservative forces �qH=qQi with a new Hamiltonian H ¼ HðQ;P; tÞ
and with qH=qPi ¼ qH=qPi. The second part may be combined with ��cij qH 0=qPj to constitute an effective
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damping forces ��mij qH=qPi with mij ¼ mijðQ;P; tÞ. With these accomplished, Eq. (9) can be rewritten as

dQi ¼
qH

qPi

dt,

dPi ¼ �
qH

qQi

þ �mij

qH

qPj

� �
dtþ �1=2f ik dBkðtÞ; i; j ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m, ð13Þ

which is the Itô equations for regular quasi-Hamiltonian systems.

3. Averaged equations and stationary solutions

The stochastic averaging method for quasi-Hamiltonian systems has been well developed [12,16,17,19]. The
dimension and form of the averaged Itô and FPK equations depend upon the integrability and resonance of
the associated Hamiltonian system. Suppose that the Hamiltonian system with modified Hamiltonian H is still
integrable. Then the stochastic averaging method for quasi-integrable Hamiltonian systems [12] can be applied
to the system governed by Eq. (13). The dimension and form of the averaged Itô and FPK equations depend
upon the resonance of the associated Hamiltonian system with modified Hamiltonian H.

3.1. Non-resonant case

In this case, the averaged Itô equations are of the form

dIr ¼ �UrðIÞdtþ �1=2VrkðIÞdBkðtÞ; r ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m (14)

and the averaged FPK equation is of the form

qp

qt
¼ � �

q
qI r

½arðIÞp� þ
1

2

q2

qIr qI s

½brsðIÞp�

� �
. (15)

In Eqs. (14) and (15),

arðIÞ ¼ UrðIÞ ¼
1

ð2pÞn

Z 2p

0

�mij

qH

qpj

qIr

qpi

þDklf ikf jl

q2I r

qpiqpj

 !
dh,

brsðIÞ ¼ ½VV
T�rs ¼

1

ð2pÞn

Z 2p

0

2Dklf ikf jl

qI r

qpi

qI s

qpj

 !
dh; r; s; i; j ¼ 1; 2; . . . ; n; k; l ¼ 1; 2; . . . ;m ð16Þ

in which h ¼ ½y1; y2; :::; yn�
T, V ¼ ½V rk� and

R 2p
0 ½d�dh denotes an n-fold integral.

The exact stationary solution of FPK Eq. (15) with vanish probability potential flow at boundary is of the
form

pðIÞ ¼ C exp½�lðIÞ�, (17)

where C is a normalization constant and l(I) is the so-called probability potential which is governed by
equations

brs

ql
qIs

¼
qbrs

qI s

� 2ar; r; s ¼ 1; 2; . . . ; n. (18)

If diffusion matrix B ¼ ½brs� is not singular, i.e., its inverse matrix B�1 ¼ G ¼ ½grs� exists, then Eq. (18) can
be converted into

ql
qI i

¼ gir

qbrs

qIs

� 2ar

� �
. (19)

Furthermore, if the following compatibility conditions

q
qI j

gir

qbrs

qIs

� 2ar

� �
¼

q
qI i

gjr

qbrs

qIs

� 2ar

� �
(20)
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are satisfied, then the probability potential is

lðIÞ ¼ l0 þ
Z I

0

ql
qIs

dIs, (21)

where l0 ¼ lð0Þ and the second term is a summation of line integrals over s ¼ 1; 2; . . . ; n. The exact stationary
solution p(I) of averaged FPK Eq. (15) is obtained by substituting Eq. (21) into Eq. (17). The approximate
stationary probability density of system (1) is then

pðq; pÞ ¼ pðI; hÞ
qðI; hÞ
qðq; pÞ

����
���� ¼ pðhjIÞpðIÞ

qðI; hÞ
qðq; pÞ

����
���� ¼ 1

ð2pÞn
pðIÞ, (22)

where jqðI; hÞ=qðq; pÞj is the absolute value of the Jacobian determinant of the canonical transformations from
q,p to I,h which is always equal to unity.

If the action-angle variables I,h for Hamiltonian system with Hamiltonian H can not be obtained, then the
averaged Itô equations for independent integrals of motion may be derived. Suppose that Eq. (10) still holds
for the modified Hamiltonian, i.e.,

H ¼
Xn

i¼1

Hiðqi; piÞ; Hi ¼ p2
i =2þ GiðqiÞ (23)

then the averaged Itô equations are of the form

dHr ¼ �m̄rðHÞdtþ �1=2s̄rkðHÞdBkðtÞ; r ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m (24)

and the averaged FPK equation is of the form

qp

qt
¼ � �

q
qHr

arðHÞp½ � þ
1

2

q2

qHr qHs

brsðHÞp½ �

� �
, (25)

where the averaged drift and diffusion coefficients are

arðHÞ ¼ m̄rðHÞ ¼
1

T

I
�mij

qH

qpj

qHr

qpi

þ
1

2
siksjk

q2Hr

qpi qpj

 !Yn

u¼1

1

�
qHu

qpu

� �
dqu,

brsðHÞ ¼ s̄rks̄skðHÞ ¼
1

T

I Yn

u¼1

siksjk

qHr

qpi

qHr

qpj

,
qHu

qpu

 !
dqu ð26Þ

in which

T ¼ TðHÞ ¼
Yn

u¼1

TuðHuÞ ¼
Yn

u¼1

I
1

�
qHu

qpu

� �
dqu. (27)

The exact stationary solution p(H) to averaged FPK Eq. (25) can be obtained similarly and the approximate
stationary probability density of system (1) is then

pðq; pÞ ¼ pðHÞ=TðHÞ. (28)

3.2. Resonant case

Suppose that the modified Hamiltonian system with Hamiltonian H is integrable and resonant with a weak
resonant relations of the form

ku
ror ¼ 0ð�Þ; u ¼ 1; 2; . . . ; a; r ¼ 1; 2; . . . ; n. (29)

Then the averaged Itô equations are of the form

dIr ¼ �m̄rðI;WÞdtþ �1=2s̄rkðI;WÞdBkðtÞ,

dCu ¼ �m̄nþuðI;WÞdtþ �1=2s̄nþu;kðI;WÞdBkðtÞ; r ¼ 1; 2; . . . ; n; u ¼ 1; 2; . . . ; a; k ¼ 1; 2; . . . ;m ð30Þ
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and the averaged FPK equation is of the form

qp

qt
¼ � �

q
qIr

ðarpÞ �
q

qcu

ðanþupÞ þ
1

2

q2

qIr qIs

ðbrspÞ

�
þ

q2

qIr qcu

ðbr;nþupÞ þ
1

2

q2

qcu qcv

ðbnþu;nþvpÞ

�
, (31)

where W ¼ ½C1;C2; . . . ;Ca�
T, cu ¼ ku

rYr, k ¼ 1; 2; . . . ; a and

m̄rðI;WÞ ¼
1

ð2pÞn�a

Z 2p

0

�mij

qH

qpj

qIr

qpi

þ
1

2
siksjk

q2Ir

qpi qpj

 !
dh1,

m̄nþuðI;WÞ ¼
1

ð2pÞn�a

Z 2p

0

Ouð�Þ �mij

qH

qpj

qCr

qpi

þ
1

2
siksjk

q2Cr

qpi qpj

 !
dh1,

s̄iks̄skðI;WÞ ¼
1

ð2pÞn�a

Z 2p

0

siksjk

qIr

qpi

qIs

qpj

dh1,

s̄rks̄nþu;kðI;WÞ ¼
1

ð2pÞn�a

Z 2p

0

siksjk

qIr

qpi

qCu

qpj

dh1,

s̄nþu;ks̄nþv;kðI;WÞ ¼
1

ð2pÞn�a

Z 2p

0

siksjk

qCu

qpi

qCv

qpj

dh1,

ar ¼ arðI;wÞ ¼ m̄rðI;WÞ,

anþu ¼ anþuðI;wÞ ¼ m̄nþuðI;WÞ,

brs ¼ brsðI;wÞ ¼ s̄rks̄skðI;WÞ,

br;nþu ¼ br;nþuðI;wÞ ¼ s̄rks̄nþu;kðI;WÞ,

bnþu;nþv ¼ bnþu;nþvðI;wÞ ¼ s̄nþu;ks̄nþv;kðI;WÞ; r; s; i; j ¼ 1; 2; . . . ; n; u; v ¼ 1; 2; . . . ; a; k; l ¼ 1; 2; . . . ;m

ð32Þ

in which h1 ¼ ½y1; y2; . . . ; yn�r�
T. The exact stationary solution to averaged FPK Eq. (31) is of the form

pðI;wÞ ¼ C exp½�lðI;wÞ�, (33)

where l(I, w) can be obtained by expanding l(I, w), the averaged drift and diffusion coefficients into a-fold
Fourier expansions of w, substituting them into averaged FPK Eq. (31) with qp=qt ¼ 0 and obtaining the
Fourier coefficients of l(I,w). The approximate stationary solution of system (1) is then

pðq; pÞ ¼ pðI;w; h1Þ
qðI;w; h1Þ
qðq; pÞ

����
���� ¼ pðh1jI;wÞpðI;wÞ

qðI;w; h1Þ
qðq; pÞ

����
���� ¼ 1

ð2pÞðn�aÞ
pðI;wÞ

qðI;w; h1Þ
qðq; pÞ

����
����, (34)

where jqðI;w; h1Þ=qðq; pÞj is the absolute value of the Jacobian determinant for the transformation from q, p to
I, w, h1, which is an integer.

4. Examples

Three examples are given to illustrate the application and effectiveness of the proposed method.

4.1. Example 1

Consider a van der Pol oscillator with time-delayed linear feedback control subject to Gaussian white noise
excitation. The equation of motion is

€X þ o02X ¼ �ð1� X 2Þ _X � �ða1X t þ a2
_X tÞ þ �

1=2W ðtÞ, (35)

where e is a small positive parameter; X t ¼ X ðt� tÞ and _X t ¼ _X ðt� tÞ are delayed system state; a1 and a2 are
feedback control gains; W(t) is a Gaussian white noise with intensity 2D. System (35) without stochastic
excitation has been studied by Atay [18] using averaging method.
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Note that there is no Wong–Zakai correction term for this example. Let X ¼ Q, _X ¼ P. The Hamiltonian
associated with the system (35) is

H 0 ¼ I 0o0 ¼ ðo02q2 þ p2Þ=2, (36)

The time-delayed feedback control forces in system (35) can be approximately converted into one without time
delay, i.e.,

�ða1Qt þ a2PtÞ¼
:
�½ða1 cos o0tþ a2o0 sin o0tÞQþ a2 cos o0t�

a1

o0
sin o0t

	 

P�. (37)

Note that on the right-hand side of Eq. (37), the term proportional to Q represents conservative control
force while that proportional to P represents dissipative control force. The first term should be combined with
the restoring force o02Q into a modified restoring force o02Qþ �ða1 cos o0tþ a2o0 sin o0tÞQ. Thus, the
modified Hamiltonian is

H ¼ Io ¼ ½p2 þ ðo02 þ �a1 cos o0tþ �a2o0 sin o0tÞq2�=2 (38)

and the modified frequency is

o ¼ ðo02 þ �a1 cos o0tþ �a2o0 sin o0tÞ1=2. (39)

The action variable is I ¼ H=o.
Applying the stochastic averaging method to the modified system leads to the averaged Itô equation

dI ¼ �UðIÞdtþ �1=2V ðIÞdBðtÞ (40)

and averaged FPK equation

qp

qt
¼ � �

q
qI
½aðIÞp� þ

1

2

q2

qI qI
½bðIÞp�

� �
, (41)

where

aðIÞ ¼ UðIÞ ¼ 1þ
a1

o
sin ot� a2 cos ot

	 

I �

I2

2o
þ

D

o
,

bðIÞ ¼ V 2ðIÞ ¼
2DI

o
. ð42Þ

The exact stationary solutions to FPK Eq. (41) is

pðIÞ ¼ C exp½�lðIÞ�, (43)

where

lðIÞ ¼
I2

4D
�

oI

D
1þ

a1

o
sin ot� a2 cos ot

	 

. (44)

The approximate stationary probability density of original system (35) is then

pðx; _xÞ ¼
1

2p
pðIÞjI¼ð _x2þo2x2Þ=2o. (45)

Some numerical results for stationary marginal probability density p(x) of system (35) with displacement,
velocity and both displacement and velocity feedback controls obtained by using the proposed stochastic
averaging method and from digital simulation are shown in Figs. 1–3, respectively. It is seen that in all three
cases the results obtained by using the proposed method agree well with those from digital simulation even for
long delay time. From Eq. (37) it is seen that the time-delayed feedback control forces change both the nature
frequency and damping coefficient of the oscillator in a manner of harmonic function with periodic
T ¼ 2p=o0. So, both the stability and response may be affected by the time-delayed feedback control. For
example, in the case of displacement feedback control without time delay, the response of the system is
a diffused limit cycle (see Fig. 1(a)) while it is random vibration around the origin when time delay t ¼ 5:0
(see Fig. 1(f)). This implies that time-delayed feedback control may cause phenomenological bifurcation.
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Fig. 1. Stationary marginal probability density p(x) of system (35) with displacement feedback. The parameters are: o0 ¼ 1, a1 ¼ 1,

a2 ¼ 0, � ¼ 0:01, 2D ¼ 0:2, (a) t ¼ 0, (b) t ¼ 1, (c) t ¼ 2, (d) t ¼ 3, (e) t ¼ 4, (f) t ¼ 5, (g) t ¼ 6, (h) t ¼ 7. — By using the proposed

stochastic averaging method; K from digital simulation.
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Fig. 2. Stationary marginal probability density p(x) of system (35) with velocity feedback. The parameters are: o0 ¼ 1, a1 ¼ 0, a2 ¼ 1,

� ¼ 0:01, 2D ¼ 0:2, (a) t ¼ 0, (b) t ¼ 1, (c) t ¼ 2, (d) t ¼ 3, (e) t ¼ 4, (f) t ¼ 5, (g) t ¼ 6, (h) t ¼ 7. — By using the proposed stochastic

averaging method; K from digital simulation.
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Fig. 3. Stationary marginal probability density p(x) of system (35) with both displacement and velocity feedback. The parameters are:

o0 ¼ 1, a1 ¼ 1, a2 ¼ 1, � ¼ 0:01, 2D ¼ 0:2, (a) t ¼ 0, (b) t ¼ 1, (c) t ¼ 2, (d) t ¼ 3, (e) t ¼ 4, (f) t ¼ 5, (g) t ¼ 6, (h) t ¼ 7. — By using the

proposed stochastic averaging method; K from digital simulation.
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It happens also in the case of velocity feedback control (see Fig. 2) and in the case of both displacement and
velocity feedback controls (see Fig. 3).
4.2. Example 2

Consider two linear oscillators coupled by linear and polynomial type nonlinear dampings subject to
external excitations of two uncorrelated Gaussian white noises and delayed velocity feedback control. The
equations of motion of the system are of the form

€X 1 þ �½a011 _X 1 þ a12 _X 2 þ b1 _X 1ðX
2
1 þ X 2

2Þ� þ o021X 1 ¼ ��Z1 _X 1t þ �
1=2W 1ðtÞ,

€X 2 þ �½a21 _X 1 þ a022 _X 2 þ b2 _X 2ðX
2
1 þ X 2

2Þ� þ o022X 2 ¼ ��Z2 _X 2t þ �
1=2W 2ðtÞ, ð46Þ

where a0ii; aij ; bi; Zi;o
0
iði; j ¼ 1; 2Þ are constants; �Ziði ¼ 1; 2Þ are the feedback gain and �Zi

_X it ¼ �Zi
_X iðt� tÞ

are time-delayed feedback control forces; W iðtÞði ¼ 1; 2Þ are uncorrelated Gaussian white noises with
intensities 2Dii.

The Hamiltonian system associated with Eq. (46) is linear and the Hamiltonian can be expressed in terms of
action variables as

H 0 ¼
X2
i¼1

o0iI
0
i; I 0i ¼

1

2o0i
ð _X

2

i þ o02i X 2
i Þ; y0i ¼ �tan

�1
_X i

o0iX i

� �
. (47)

The time-delayed system state in system (46) can be approximately converted into that without time delay as

_X it ¼ _X i cos o0itþ X io0i sino
0
it. (48)

The modified Hamiltonian is of the form

H ¼
X2
i¼1

oiI i, (49)

where o2
i ¼ o02i þ �Zio

0
i sino

0t. Ii and yi are of the same form as I 0i and y0i in Eq. (47) with o0i replaced by oi.
Also, the damping coefficients a0ii become aii ¼ a0ii þ �Zioi sin oit. Eq. (46) can be rewritten as the following
Itô stochastic differential equations:

dI i ¼ � �½ðai1
_X 1 þ ai2

_X 2 þ bi
_X iðX

2
1 þ X 2

2Þ�
_X i

oi

þ
Dii

oi

� �
dtþ �1=2

_X i

oi

dBtðtÞ,

dyi ¼ oi þ � ½ðai1
_X 1 þ ai2

_X 2 þ bi
_X iðX

2
1 þ X 2

2Þ�
oiX i

o2
i X 2

i þ
_X
2

i

þDii

2oiX i
_X i

ðo2
i X 2

i þ
_X
2

i Þ
2

( )
dt

� �1=2
oiX i

o2
i X 2

i þ
_X
2

i

dBiðtÞ. ð50Þ

Note that the repeated subscripts in Eq. (50) do not imply a summation. Two cases are considered in the
following.

Nonresonant case: ro1 þ so2a0; r; s are integers. In this case, the averaged FPK equation is of the form of
Eq. (15) with the following drift and diffusion coefficients

a1 ¼ �a11I1 �
b1
2o1

I21 �
b1
o2

I1I2 þ
D11

o1
,

a2 ¼ �a22I2 �
b2
2o2

I22 �
b2
o1

I1I2 þ
D22

o2
,

b11 ¼
2

o1
D11I1; b22 ¼

2

o2
D22I2; b12 ¼ b21 ¼ 0. ð51Þ
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The stationary solution of the averaged FPK equation is of the form of Eq. (17), where ql=qIs satisfy the
following equations:

2D11I1

o1

ql
qI1
¼

2D11

o1
� 2 �a11I1 �

b1
2o1

I21 �
b1
o2

I1I2 þ
D11

o1

� �
,

2D22I2

o2

ql
qI2
¼

2D22

o2
� 2 �a22I2 �

b2
2o2

I22 �
b2
o1

I1I2 þ
D22

o2

� �
. ð52Þ

If ðb1=D11Þðo1=o2Þ ¼ ðb2=D22Þðo2=o1Þ ¼ g, the averaged FPK equation has an exact stationary solution

pðI1; I2Þ ¼ C exp½�lðI1; I2Þ�, (53)

where

lðI1; I2Þ ¼
1

D11
a11o1I1 þ

b1
4

I21

� �
þ

1

D22
a22o2I2 þ

b2
4

I22

� �
þ gI1I2. (54)

The approximate stationary probability density of the displacements and velocities of original system (46) is
then

pðx1;x2; _x1; _x2Þ ¼
1

4p2
pðI1; I2ÞjI i¼ð _x

2
iþo

2
i
x2

i
Þ=2oi

. (55)

Primary resonant case: o1 ¼ o2 ¼ o. Let y1 � y2 ¼ c. The averaged FPK equation in this case is of the
form of Eq. (31) with the following drift and diffusion coefficients:

a1 ¼ �a11I1 � a12
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos c�

b1
2o

I21 �
b1
o

I1I2ð1�
1

2
cos 2cÞ þ

D11

o
,

a2 ¼ �a22I2 � a21
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos c�

b2
2o

I22 �
b2
o

I1I2ð1�
1

2
cos 2cÞ þ

D22

o
,

a3 ¼
1

2
a12

ffiffiffiffiffi
I2

I1

r
þ a21

ffiffiffiffiffi
I1

I2

r� �
sin c�

1

4o
ðb1I2 þ b2I1Þ sin 2c,

b11 ¼
2

o
D11I1; b22 ¼

2

o
D22I2; b33 ¼

1

2o
D11

I1
þ

D22

I2

� �
,

b12 ¼ b21 ¼ b13 ¼ b31 ¼ b23 ¼ b32 ¼ 0. ð56Þ

The stationary solution of the averaged FPK equation is of the form

pðI1; I2;cÞ ¼ C exp½�lðI1; I2;cÞ�, (57)

where lðI1; I2;cÞ satisfies the following partial differential equations:

2D11I1

o
ql
qI1
¼

2D11

o
� 2½�a11I1 � a12

ffiffiffiffiffiffiffiffiffi
I1I2

p
cos c�

b1
2o

I21 �
b1
o

I1I2 1�
1

2
cos 2c

� �
þ

D11

o
�,

2D22I2

o
ql
qI2
¼

2D22

o
� 2½�a22I2 � a21

ffiffiffiffiffiffiffiffiffi
I1I2

p
cos c�

b2
2o

I22 �
b2
o

I1I2ð1�
1

2
cos 2cÞ þ

D22

o
�,

D11

2oI1
þ

D22

2oI2

� �
ql
qc
¼ � a12

ffiffiffiffiffi
I2

I1

r
þ a21

ffiffiffiffiffi
I1

I2

r� �
sin cþ

1

2o
ðb1I2 þ b2I1Þ sin c. (58)

Let

lðI1; I2;cÞ ¼ l0ðI1; I2Þ þ l1ðI1; I2Þ cos cþ l2ðI1; I2Þ cos 2c. (59)

Substituting Eq. (59) into Eq. (58), we obtain three sets of partial differential equations for l0, l1 and l2. In
the case that b1=D11 ¼ b2=D22 ¼ g1, a12=D11 ¼ a21=D22 ¼ g2, we obtain the exact stationary solution (57) with

lðI1; I2;cÞ ¼
a11o
D11

I1 þ
a22o
D22

I2 þ
b1

4D11
I21 þ

b2
4D22

I22 þ g1I1I2 �
g1
2

I1I2 cos 2cþ 2g2o
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos c. (60)
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The approximate stationary probability density of the displacements and velocities of original system (46) is
then

pðx1; _x1; x2; _x2Þ ¼
1

2p
pðI1; I2;cÞ, (61)

where c ¼ y1 � y2; Ii and yi are functions of xi and _xi.
Let q1, p1 represent the displacement and velocity of the first oscillator, respectively. Some numerical results

for stationary probability density p(q1, p1) obtained by using the proposed stochastic averaging method and
from digital simulation are shown in Fig. 4 for non-resonant case and in Fig. 5 for primary resonant case. It is
seen that the proposed method yields very good prediction even the time delay approaches to one period. For
both non-resonant and resonant cases, the results for several t values are given to illustrate the effect of time
delay in control forces on the response of the system. It is seen that the time delay in control forces may affect
the response of the system greatly, and may even cause phenomenological bifurcation.

4.3. Example 3

As an example of strongly nonlinear stochastic system, consider a Duffing–van der Pol oscillator with
delayed linear feedback control subject to Gaussian white noise excitation. The equation of motion is

€X þ o020X þ aX 3 ¼ �ðb� X 2Þ _X � �ða _X tÞ þ �
1=2W ðtÞ, (62)

where e is a small positive parameter; _X t ¼ _X ðt� tÞ is delayed system velocity; ea is feedback control gain;
W(t) is a Gaussian white noise with intensity 2D.

Note that there is no Wong–Zakai correction term for this example. Let X ¼ Q, _X ¼ P. The Hamiltonian
associated with the system (62) is

H 0 ¼
1

2
p2 þ

1

2
o020q

2 þ
1

4
aq4. (63)

The time-delayed feedback control force in system (62) can be approximately converted into a control force
without time delay, i.e.,

�aPt¼
:
�aðP cos o0tþQo0 sin o0tÞ, (64)

where the average frequency o0 is

o0ðH 0Þ ¼
p
ffiffiffi
a
p

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
KðrÞ

, (65)

where K(r) is complete elliptic integral of the first kind; r ¼ A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, A2 ¼ o020=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aH 0=o040

q
� 1

� �
,

B2 ¼ o020=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aH 0=o040

q
þ 1

� �
.

After the term proportional to Q in Eq. (64) is combined with the restoring force to form a modified
restoring force, the new Hamiltonian is

H ¼
1

2
p2 þ

1

2
o2

0q
2 þ

1

4
aq4, (66)

where o2
0 ¼ o020 þ �o

0 sin o0t. Also, we can obtain modified frequency o(H) of the nonlinear oscillator, which
is of the same form as o0(H0) in Eq. (65) but with o00 is replaced by o0.

The Itô equation for H can be obtained from Eq. (62) by using Itô differential rule as follows:

dH ¼ � ½ðb� q2 � a cos ot�p2 þD
� 

dtþ �1=2pdBðtÞ. (67)

Applying the stochastic averaging method to Eq. (67) leads to the following averaged FPK equation

qp

qt
¼ � �

q
qH
½aðHÞp� þ

1

2

q2

qH qH
½bðHÞp�

� �
, (68)
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Fig. 4. Stationary probability density p(q1, p1) of system (46) with velocity feedback in non-resonant case. The parameters are: (a1) t ¼ 0,

b2 ¼ 5:0, result obtained by using proposed stochastic averaging method; (a2) t ¼ 0, b2 ¼ 5:0, result obtained by using digital simulation;

(b1) t ¼ 1, b2 ¼ 5:04, result obtained by using proposed stochastic averaging method; (b2) t ¼ 1, b2 ¼ 5:04, result obtained by using digital

simulation; (c1) t ¼ 4, b2 ¼ 4:91, result obtained by using proposed stochastic averaging method; (c2) t ¼ 4, b2 ¼ 4:91, result obtained by

using digital simulation; (d1) t ¼ 5, b2 ¼ 4:65, result obtained by using proposed stochastic averaging method; (d2) t ¼ 5, b2 ¼ 4:65, result
obtained by using digital simulation; The other parameters are: � ¼ 0:01;o01 ¼ 1:0; 2D11 ¼ 0:2; a011 ¼ �5:0; a12 ¼ 5:0;b1 ¼ 10:0; Z1 ¼ 5:0,
o02 ¼ 1:414, 2D22 ¼ 0:2; a21 ¼ 5:0; a022 ¼ 5:0; Z1 ¼ 5:0.
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Fig. 5. Stationary probability density p(q1, p1) of system (46) with velocity feedback in resonant case. The parameters are: (a1) t ¼ 0, result

obtained by using proposed stochastic averaging method; (a2) t ¼ 0, result obtained by using digital simulation; (b1) t ¼ 1, result obtained

by using proposed stochastic averaging method; (b2) t ¼ 1, result obtained by using digital simulation; (c1) t ¼ 2, result obtained by using

proposed stochastic averaging method; (c2) t ¼ 2, result obtained by using digital simulation; (d1) t ¼ 6, result obtained by using

proposed stochastic averaging method; (d2) t ¼ 6, result obtained by using digital simulation; The other parameters are:

� ¼ 0:01;o01 ¼ 1:0; 2D11 ¼ 0:2; a011 ¼ �5:0; a12 ¼ 5:0; b1 ¼ 5:0; Z1 ¼ 5:0, o02 ¼ 1:0, 2D22 ¼ 0:2; a21 ¼ 5:0; a022 ¼ �5:0; b2 ¼ 5:0; Z2 ¼ 5:0.
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where the drift and diffusion coefficients are

aðHÞ ¼
1

TðHÞ

I
O

½ðb� q2 � a cos ot�p2 þD
� ��

pdq,

bðHÞ ¼
1

TðHÞ

I
O

½2Dp2
� ��

pdq,
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Fig. 6. Stationary marginal probability density p(x) of system (62) with velocity feedback. The parameters are: a ¼ 1:0, b ¼ 1:0, o00 ¼ 1:0,
a ¼ 0:5, � ¼ 0:01, 2D ¼ 0:2, (a) t ¼ 0, (b) t ¼ 1, (c) t ¼ 2, (d) t ¼ 3, (e) t ¼ 5, (f) t ¼ 6. — By using the proposed stochastic averaging

method; K from digital simulation.
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TðHÞ ¼

I
O

1

�
p

� �
dq,

O ¼ fqjH ¼ o2
0q

2
�
2þ aq4

�
4g. ð69Þ

The stationary solutions to averaged FPK Eq. (68) is

pðHÞ ¼ C exp½�lðHÞ�, (70)

where

lðHÞ ¼ l0 þ
Z H

0

1

bðHÞ

dbðHÞ

dH
� 2aðHÞ

� �
dH. (71)

The approximate stationary probability density of original system (62) is then

pðq; pÞ ¼
1

2p
pðHÞj

H¼
1
2

p2þ
1
2
o2

0
q2þ

1
4
aq4

� �. (72)

Some numerical results for stationary marginal probability density p(x) obtained by using the proposed
stochastic averaging method and from digital simulation are shown in Fig. 6. From the figures, it is seen that
the analytical results obtained by using the proposed method agree well with those from digital simulation
even for long delay time. From the figures, we can also see the phenomenological bifurcation in the response of
the system caused by the delayed feedback control.

5. Conclusion

In the present paper, a stochastic averaging method for quasi-integrable Hamiltonian systems with time-
delayed feedback control has been proposed. After the time-delayed feedback control forces are approximated
by control forces without time delay, the original stochastic averaging method for quasi-integrable
Hamiltonian systems proposed by the present second author and his co-workers can be directly applied to
the systems with time-delayed feedback control. The analytical results obtained for three examples agree well
with those from digital simulation even for large time delay. The numerical results show that the delayed
feedback control may affect the response of a system greatly and even may cause phenomenological
bifurcation.
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